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Abstract 

Over  the  last  decade  and  continuing  into  the 
foreseeable  future, a  trend  has  developed in the 
spacecraft  industry of both  number of missions and  the 
amount of  data  taken  by  each  mission  increasing  faster 
than bandwidth  capabilities to send  these  data to Earth. 
The result of this trend is a  bottleneck  between  data 
gathering  (on-board)  and  data  analysis (on  the ground.) 
This  bottleneck  can  be  overcome  by  performing -data 
analysis  on-board  and  only  transferring the results ofthis. 
analysis  to the ground,  rather than the raw  data. One 
attempt  to  do this is  being  made  by the NASA HPCC ” 

Remote  Exploration  and  Experimentation (ME) Project, 
which  is  developing  spaceborne  embedded  clusters. 
Spaceborne  embedded  clusters  share  many 
characteristics of traditional, ground-based  clusters such 
as  POSIX-compliant  operating  systems  and  message- 
passing  applications,  but  also  have  signvicant 
differences,  including  packaging  and the need for  fault- 
tolerance  and  real-time  scheduling in software. This 
paper discusses  these  similarities  and  differenkes, and 
how  they impact  application  development. 

1. INTRODUCTION 
9 

Over the  last decade, the National Aeronautics and 
Space  Administration  (NASA)  has  adopted a new  strategy 
for its spacecraft missions: “better, faster, cheaper.”  In 
September 1992, NASA Administrator Daniel S. Goldin 
told the World Space Congress “We must push out 
beyond our comfort  zone, and make ourselves build 
spacecraft smaller, faster, and cheaper.” Later, “better” 
replaced ‘‘smaller’’  in this phrase. One of the results of 
this strategy is that many smaller (and cheaper) missions 
are taking the place of a few large (and expensive) 
missions.  However,  the  capabilities ,Qf the 
communication systems used to operate these missions 
have not correspondingly  increased [l] .  While the 
number of missions is increasing, the capabilities of the 
instruments on these missions are also increasing. They 
are providing data at ever increasing rates, far faster than 
is  feasible  to send the data to Earth,  and  the rate of  growth 
of  the data from the instruments is also  faster  than the rate 
of growth of bandwidth to Earth, so this problem will 
only get worse in  the future. (Even  though  recent  events 
have cast some doubts on the current implementation of 
the “better faster, cheaper” strategy and it will probably 

undergo some  changes in the near  future,  it is very 
unlikely that NASA will return to an overall strategy of 
fewer,  more  expensive  missions.) 

One obvious answer to this problem is to process the 
data where it is collected, and to return only the results of 
the analysis to Earth, rather than the raw data. Similarly, 
processing data and autonomously making decisions on- 
board spacecraft will eliminate the problem of latency 

I between Earth and space. Many events that we wish to 
observe, and,record are both short-lived and unpredictable, 
and  thus,  do  not  allow an observer on Earth to modify the 
behavior of. a  spacecraft as would  be  needed.  For 
example, a gamma-ray burst may be  observed  by  a 
spacecraft with a  large  field-of-view  detector, which 
could then autonomously change orientation  to aim a 
more detailed instrument at the source of the burst. If an 
astronomer on the ground had to command this action, it 
is likely the burst, or some large part  of  it, would be 
complete  before the spacecraft  was  ready to observe it. 

Traditionally,  very little data analysis has been done in 
space, and  what has been done has relied on radiation- 
hardened  processors.  These architectures are quite old by 
the time they complete the radiation-hardening process, 
and  do  not solve the problems of bandwidth and latency. 
One  solution  is  an  embedded  cluster  of  COTS 
(Cottimercial-Off-The-Shelf) processors,  where  the 
processors can be selected and placed in the  system 
shortly before mission launch. In as much as COTS 
processors are not radiation  hardened,  this  requires 
software that  can detect and correct errors caused by the 
cosmic ray environment  found  in space. Such a system is 
being developed by the Jet Propulsion Laboratory under 
the  Remote  Exploration  and  Experimentation  (REE) 
Project [2]. 

The  constraints  of  the  space  environment  (mass, 
power, volume, resistance to vibration, shock, thermal 
cycling and natural space radiation) demand work in 
packaging that is very different than for most ground- 
based clusters.  Additionally,  replacement  of  faulty 
components is either impossible or extremely expensive, 
and uploading new or changing existing software is very 
difficult from a system design as well as operational 
perspective. Finally, reliability of the software as well as 
the hardwarelsystem is a significant concern due to the 
difficulty in validating computational results,  and the 
potential impact of erroneous behavior with respect to 
decision making and scientific data analysis. Thus, a 
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different  set  of  requirements  exists  for  spaceborne 
computers  than for ground-based  computers. 

2. HARDWARE REQUIREMENTS 

Form factor is a critical factor  in  embedded  computing. 
Thus compute density (GFlops per cubic foot  and  GFlops 
per watt) is often as or more important than aggregate 
processing power. Typically, embedded system vendors 
are able to achieve roughly a factor of 10 increase in 
compute density over conventional systems. These  gains 
are achieved by constructing boards containing multiple 
nodes (typically 2 or 4). Each node consists of a low 
power processor (e.g.,  Motorola  PowerPC)  with a limited 
amount of memory  (e.g. 128 MBytes).  In addition, there 
are  no local disks and access to the node is limited to  the 
interconnect, which may be custom or commodity (e.g. 
Myrinet, though the interconnect form factor may be a 
problem), and will have been packaged to minimize size 
and power consumption. These various design tradeoffs 
allow embedded vendors to fit nearly 100 processing 
nodes  in a volume that can fit underneath a typical office 
desk. 

As mentioned previously, many embedded systems 
need to withstand much more severe conditions than 
standard clusters. These systems may be used in the 
aerospace or military industries, leading to requirements 
on tolerance  to  shock,  vibration,  radiation,  thermal 
conditions,  etc.  While many of today's commercial 
components can handle these conditions, they are not 
packaged to do so, as this increases cost and is not  needed 
by most ordinary users. Thus, for this niche market, 
different vendors have sprung up to package standard 
commercial  parts  with more consideration  of  these 
concerns. 

There  are  a  variety  of  vendors  that manufacture 
systems along the above lines. Mercury, CSPI  and Sky 
are three of the more popular systems. Some of the 
general capabilities are shown  below [3]. In  addition,  for 
comparison, a tradition cluster system  built at JPL is also 
shown. 

TABLE I: 
COMPAFUSON OF COMMERCIAL EMBEDDED SYSTEMS 

, .  

In addition  to  these  vendors  that  specialize in 
embedded systems, a number of other companies build 
embedded systems, both parallel and distributed for their 
customers. These vendors may take systems from the 
standard vendors  listed  above and ruggedize and/or 
repackage them, and they include many US defense 

contractors (Lockheed, Honeywell, General Dynamics, 
etc.) 

3.' THE REMOTE-EXPLORATION AND 
EXPERIMENTATION PROJECT 

Within the NASA High Performance Computing and 
Communications  (HPCC)  Program,  the  Remote 
Exploration  and Experimentation (REE) Project at the Jet 
Propulsion  Laboratory  (JPL)  intends: 

To bring  commercial  supercomputing 
technology  into  space,  in a form which  meets  the 
demanding  environmental  requirements, to 
enable a new class of science investigation and 
discovery. 

~ , _  

Specifically,  the  project  will: 

. Dei-hohstrate a process  for  rapidly transferring 
commercial  high-performance  computing 
technology into ultra-low  power, fault-tolerant 
architectures for space. 

Demonstrate  that  high-performance  onboard 
processing  capability  enables a new class of 
science  investigation  and  highly  autonomous 
remote  operation. 

. I  

The' project consists of three initiatives: applications, 
computing testbeds, and  system software. The purpose of 
the  applications initiative is to demonstrate that the unique 
high-performance  low-power  computing  capability 
developed  by  the  project  enables  new  science 
investigation and discovery. In order to do this,  five 
ScienCe"App1ication Teams  (SATs)  were  chosen  to 
develop 'scalable science applications, and to port these to 
REE testbeds  running REE system  software.  The 
applicatibns are meant to  be  developed  on  standard 
ground-based clusters,  and  then  ported  to the REE 
embedded cluster with minimal changes. The needs of 
the applications also lead to requirements on the system 
software,  and  ensure  that  the  hardware  and  system 
software  meet  the  needs of the  NASA  spaceborne 
applications community. The set of SATs will change 
over time to increase the project's exposure to NASA 
missions and to help the project understand the needs of 
newly,proposed missions. 

.Undet the testbed initiative, an initial testbed (a cluster 
composed of PCs running  Linux  connected  by Fast 
Ethernet) 'was built  and used for  initial  applications 
demonstrations. The next testbed (the first generation 
embedded scalable computing testbed,) which is designed 
to operate at least at 30 MOPS/watt', is currently being 
built, and is  scheduled to be delivered in September 2000. 

' MOPS are Millions  of  Operations  per  Second,  where  operations 
are  both  floating  point  and  integer. For a  spaceborne  embedded 
computer,  performance  per  unit  power is a key  metric. 
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This testbed  consists  of  40 commodity off-the-shelf 
(COTS) processors connected by a COTS  network  fabric. 
Through future  RFPs  (Requests For Proposals), the 
project will obtain additional testbeds that perform faster 
while  using less power  (at least 300 MOPSlwatt).  Criteria 
that are required of the testbeds are: consistency with 
rapid (18 month or less) transfer of new Earth-based 
technologies to space, no single point of failure, and 
gracell degradation  in  the  event  of  hardware  failure. 

The purpose of the system software initiative is to 
provide the services required to let the applications make 
as full a use as possible of the hardware while assuring 
reliable operation in space and providing an easy-to-use 
development environment. Much like the hardware, the 
system  software  is  intended  to  use  commercial 
components as much as possible.  The  major  challenge  for 
the system software is to develop a middleware layer 
between the operating system and the applications that 
accepts  that  both permanent and  transient faults will  occur 
and  provides  for  recovery  from  them. 

4. FAULT -TOLERANCE REQUIREMENTS 

The spaceborne embedded cluster described in this 
paper is being designed with certain characteristics. that 
impact  fault-tolerance  requirements [4]. They  are: 

[ l ]  The REE system is  not intended for use in  high 
radiation environments such as the Van  Allen  Belts 
or the Jovian System. This is  key to the ability to use 
non-radiation hardened components, and  thus gaiQ a 
two to three generation advantage over available 
radiation  hardened  flight  computers. 

2. The REE system is being designed primarily for the 
processing of science data, rather than  hard  (vs. soft) 
real  time,  mission  critical,  spacecraft  control 
functions. Thus, occasional resets, rocessing delays, 
and possibly even dropped frames or other service 
interruptions  are  potentially  acceptable.  The 
advantage here is that the use of non-replicated fault 
tolerance techniques with concomitant advantages  in 
powerlperformance  is  permitted. 

3 .  The system is intended, with appropriate replication 
techniques, such as software implemented ’ triple- 
modular-redundancy, to be capable of performing a 
limited range of high-reliability, operate-through,  real 
time tasks.  This will be,  at least initially, in a 
segregated portion of the system which will operate 
in a  relatively  poor  power/performance mode 
(providing only  a 2.5 to 3.0 power/performance 
improvement  over  available  radiation  hardened 
computers vs the expected 1OX improvement in  the 
rest of the system). This segregation of real time 

P 

“Frame” is used in this  paper  to mean an iteration of an 
application’s main loop of the form: input a set of data, process the data, 
and output the processed data. A dropped frame is thus an incomplete 
iteration of the loop, where no  processed data is output for given set of 
input data. 

. . ,  

activities  will allow the  system to perform these types 
of tasks if necessary, but with resultant penalties. In 
the future, the possibility of performing real time 
tasks in a minimally- or non-replicated and non- 
segregated  mode will be investigated. 

The s‘cience applications are generally MPI programs 
that  are not replicated and therefore  can  take  full 
advantage of the computing power of the hardware. 
(However, we  also  will support Triple or Quad Modular 
Redundancy  (TMR/QMR) in software  for  smaller 
applications that require high reliability, as opposed to 
high availability.)  As  the  processors  are  COTS 
components, they are not radiation-hardened, and will 
suffer from faults. The primary concerns for the REE 
environments,  i.e.,  Low  Earth  Orbit  (LEO), 
Geosynchronous Earth Orbit (GEO), and Deep Space 
(DS), are transient errors induced by natural Galactic 
Cosmic Rays (GCR’s)  and  energetic  protons.  The 
principal faults are single bit flips (also known as single 
event upsets or SEUs) in memory and registers on the 
CPU. (Note: memory off the CPU will be error-detecting 
and corfecting - EDAC.) Current understanding and 
modeling indicate that the REE first generation testbed 
would see approximately 1 single bit fault per CPU-hour 
in  either  the  GEO or DS environments, and approximately 
7 single bit faults per  CPU-hour  in the LEO environment 
[4] : 

These error rates require that  the  applications  and 
system software be self-checking, or tolerant of errors. 
The’.REE Project’s goal is  to minimize the changes that 
the  developer of the application has to make, and to make 
the’ application as portable as possible between various 
parallel systems, whether these are  standard clusters, 
embedded clusters, or massively parallel processors. In 
order to do this, much of fault-tolerance must be pushed 
onto the Bystem software or middleware, either hidden 
from the application or in the form of  tools  that the 
application  can  choose to use. 

One example of this is research in Algorithm-Based 
Fault Tolerance (ABFT) techniques, and development of 
ABFT libraries for linear algebra and Fourier analysis 
tasks<shared by the applications [SI. As an example, the 
fine  optical  control  application  from  NGST  (Next 
Generation Space Telescope, see section V) consists of 
three’  parts: phase retrieval (Misell algorithm),  phase 
unwrapding,  and actuator fitting. Approximately 70% of 
the  CPU .time spent in the phase retrieval code is used to 
pe r fod  FFTs. An ABFT wrapper for the version of the 
distributed FFT that is being used (FFTW [6 ] )  has been 
written  that  will allow the application to determine if this 
routine  completed correctly, or if an SEU occurred during 
the calculation, in which case the FFT can be repeated. 
There are two versions of the ABFT library, “nake” and 
“expert”. ’ The “nayve” library  is  a  simple  library 
replacement  that is not seen by the application. The calls 
to  the library are identical, and the only changes that  must 
be hade are an additional include file and a new library in 
the link command. With this version, the application will 

. .  

, , ,  

, ) .  



attempt the FFT a preset number of times, each time 
checking for correctness within a preset tolerance, and if 
each fails, then abort to a higher level of middleware 
control.  The  "expert"  version allows the  application  more 
control  over  the  results.  The  tolerance  used  for 
determination  of  correctness and the behavior upon 
failure can be changed, perhaps allowing the application 
to use a partially correct result  and  move  on. 

An example  of  the  required  middleware  is  an 
application manager. REE is currently working with 
Chameleon [7],  which can be thought of as an  application 
manager. It starts the application, performs checks of its 
progress, and restarts the application if needed. For the 
REE science applications, which are generally frame- 
based, restarting the application means  that  the  frame  that 
was being processed when the application crashed is the 
starting point when the application is restarted. Other 
applications  may  need  automated  check-pointing 
schemes.  Of course, Chameleon itself must  also  be  fault- 
tolerant. This is  an example of the classical paradox: sed 
quis custodiet  ipsos  custodes? (Who will watch the 
watchers?  [SI) 

Because the current MPI standard (1.2) does not  allow 
dynamic  MPI processes, when  any one processor fails the 
complete job must be restarted. While  this  is  reasonable 
for jobs where  all the processors are working together  on 
solving one large problem, some  of the REE applications 
are  in a different category, where fairly large amounts of 
work  may  be assigned by a master to some number of 
slaves, with the master integrating the results'.:  In this 
case, the failure of any one slave only should  mean  that 
the work being done by  that slave should  be  reassigned to 
another  slave, as long  as  the work units are fairly 
independent.  REE  will  likely  build  or  adapt  an 
application manager (e.g.; MW [9]) for this paradigm; as 
well. 

Additionally, the system must deal with two'types of 
hardware failures: complete node failure, long-lasting 
andlor  permanent  faults which cause  a  node'  to ' be 
unusable; and partial node failure, long-lasting and/or 
permanent faults which only effect part of  a node (i.e.; 
one memory bank) so that  the node is degraded. In both 
cases, the system software may notice a large number of 
errors on a given processor, and decide to take that 
processor out  of  the  active  cluster for testing. 'Any 
software that was running on the processor must be 
migrated to another processor, if possible by transparently 
moving it, or else by stopping it and restarting it on the 
new set of processors. A new  processor  may  be  available 
from  the set of cluster resources  that  are currently on-line, 
or it may have to be brought on-line, or for reasons of 
power or limited resources, no new processors may be 
available. These requirements imply  system  management 
with control of hardware similar to those of a traditional 
cluster's system administrator and the ability to make 
tradeoffs  between  application,  power,  and  mission 
requirements, which can be particularly difficult when 
partial node failure  exists.  A software-implemented 

system  administrator (SISA) that will be developed by  the 
REE  Project  will  perform  this  management  function. 

5. APPLICATIONS 

The first round of Science Application Teams consists 
of the following five teams: 

Gamma-ray  Large  Area Space Telescope 
(GLAST):  This  team,  led  by Prof. Peter 
Michelson  (Stanford)  and  Prof. Toby Burnett (U. 
of Washington)  will  examine detection of 
gamma  rays  in a sea of background cosmic rays 
(about 1 in 10,000 events  will  be a gamma ray), 
and  reconstruction of the  gamma-ray trajectory. 

Mars,  Rover  Science:  Dr. R. Steven Saunders 
(JPL)  leads  this  team,  which has two 
applications.  First, texture analysis and image 
segmentation are used to identify  various 
materials on Mars for further scientific analysis. 
Second,  images obtained from a stereo camera 

' i?e halyzed for use  in  autonomous  navigation. 

Next  Generation Space Telescope  (NGST):  Led 
by Dr.'John Mather  (Goddard Space Flight 
Center'- GSFC),  this  team  also  has  two 
applications. The first is to  perform multiple fast 
reads of the  charge  coupled  devices  (CCDs) 
which  take  the  telescope  images in order to 
eliminate  or  reduce  the effect of cosmic rays 
wliich hit  these  CCDs  during an exposure. The 
second  is  to  perform fine optical  control  by  using 
arwavefront  sensing  algorithm to control a 
deformable  mirror. 

Orbiting  Thermal  Imaging  Spectrometer  (OTIS): 
This team is led by Prof.  Alan Gillespie (U. of 
Washington).  They are designing an application 
to take  hyperspectral  imaging data and retrieve 
temperature  and  emissivity, as well as 
performing  spectral  matching  and  unmixing, 
then  image  classification. 

Solar  Terrestrial  Probe  Project (STP): This  team, 
led by Dr. Steven Curtis (GSFC),  is  examining 
using'fleets of spacecraft  for  two applications: 
radio  astronomical  imaging  and  plasma  moment 
analysis. 
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These 'alpplications take advantage of large amounts of 
" - 

computing, as well as performancelpower ratios that are 
at least ,an order of magnitude above those available in 
today's  spacecraft.  They are attempting to implement and 
test new approaches to  science  data  processing and 
autonomy. ,They have all delivered parallel code to the 
REE project,, 'and currently 7 of the 9 codes have been 
successfully,  ,mn  on an embedded cluster. 

The initial applications development aims at running 
the applications on the testbed without fault-detection or 
fault-recovery. Once the applications run successfully, 
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these  topics will be addressed through  the  development of 
an applications programming guide. This will define an 
interface between the application and the middleware, 
including progress messages, error reporting, application- 
specified checkpointing, ABFT calls, and other tools that 
will be developed. This is intended to be a living 
document, because the REE Project plans to iteratively 
test applications using both random  and focussed fault- 
injection, and to use the results of these experiments to 
modify or  add to the  set  of  tools  available  to  the 
application. We are eager to collaborate with others in 
examining, developing  and  testing  these  tools. The 
overall iterative process should drive down  the  number of 
undetected  and  therefore  uncorrected  faults  to  a 
sufficiently low number for the environment in which 
each mission will operate to satisfy the mission scientist 
and  to  be  similar  in  scale  to  other  errors  that  are 
commonly accepted,  including instrument noise; and 
transmission  errors. ~‘ 
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6. PRELIMINARY CONCLUSIONS 
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Understanding application behavior in  an environmeit 
where faults may occur at any time and  any^ place is 
challenging.  This was made  obvious  at  a  recent 
demonstration of the REE testbed  system.  At one.point in 
the demonstration, after a fault was injected, the program 
became  stuck in an infinite loop. When  this  happens,  the 
application manager software (Chameleon) is supposed to 
detect a lack of progress, and restart the application. 
Unfortunately, a  call  to  the application manager was 
inside the loop that became infinite, reporting (falsely,,in 
this  case)  that progress was being made.  These  calls  were 
made at regular  intervals,  and fooled the application 
manager into believing that they were legitimate. This 
incident and others has  led  to changes in the initial 
thinking  about  what programming guidelines work  best  in 
such  an  environment. 

Two possible solutions to the above problem were 
proposed. One such  proposal  was  that the application  use 
multiple progress indicators. Thus the application would 
issue a progress call to indicator n just before  entei-ing  the 
loop. Within the loop, only progress calls to indicator I r n  
would  be issued. If the above problem were to occur  ‘in 
this  case,  after  a  predefined  interval, the application 
manager would have a timeout on progress indicator n,  
and  would  therefore  restart  the  application. An 
alternative solution  would  be  for  the  program  not to issue 
progress calls unless it had independently verified that 
progress  was  actually  being  made. 

Any programming guidelines should  of course suggest 
following good programming practices such as always 
checking  for errors. In addition, because  the  program  will 
operate in  an “anything can happen” environment, it can 
not safely assume that its current state is consistent. ‘For 
example, even  though a program design  may call for  two 
variables to have values that are always correlated, an 
SEU may change this. One of the unresolved islhes is 
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how to handle  this kind of situation while still minimizing 
the  impact  on  the application programmer of operating in 
an environment with faults. As the REE project’s 
experience in this area increases, it  is likely that many 
other  interesting  issues  will  also arise. 

The REE project is  still  fairly young,  but  our 
experience to this point looks promising for the future of 
the project. We have a number of problems to solve, but 
none seem intractable, and we are convinced that our 
model of  moderately  fault-tolerant  applications on 
embedded  COTS clusters in space will play a major role 
in  many  future NASA missions. 
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